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Exercise 3.4.7

Prove that the Fourier series of a continuous function u(x,t) can be differentiated term by term
with respect to the parameter ¢ if Ju/0t is piecewise smooth.

Solution

Since u(x,t) is continuous (on —L < x < L), it has a Fourier series expansion.
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u(x,t) Z [ ) cos + By (t) sin T
The coefficients are known to be
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Because 0u/0t is piecewise smooth, it has a Fourier series expansion of its own.
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The aim is to show that
Co(t) = Ay(t) and C,(t) = AL(t) and D,(t) = B.(t).

Integrate both sides of equation (1) with respect to x from —L to L.
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Solve for Cy(t).
1 L o
Co(t) = — 8td
d[1 /L ]
— u(x,t)dx
dt [ZL _I (%)
= Ay(t)
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Multiply both sides of equation (1) by cos 7=, where p is an integer,
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and then integrate both sides with respect to x from —L to L.
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Because the sine and cosine functions are orthogonal, the third integral is zero for any n and p.
Also, the second integral is zero if n # p. Only if n = p does it yield a nonzero result.

L
" ou cos 22 gy = Chn(t) / cos? ? dx
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. Ot L
= Cu(t)(L)
Solve for Cy(t).
Cn(t) = = % Cos nLﬂ dx
d[1 [F nwx
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= A, (1)

Multiply both sides of equation (1) by sin 27%, where p is an integer,
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and then integrate both sides with respect to x from —L to L.
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Because the sine and cosine functions are orthogonal, the second integral is zero for any n and p.
Also, the third integral is zero if n # p. Only if n = p does it yield a nonzero result.

L
% sin n—zx dx = Dy (t) /_L sin? nza: dx

= Dn(t)(L)
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Solve for Dy (t).

1 (Y ou nmc
D, (t) = — sin ——
(t) = Bt L dr

LJ_

d / ' £) sin o= g

— | = u(z,t)sin — dzx

T at | L L L
B, (t)

Therefore, the Fourier series of a continuous function u(z,t) can be differentiated term by term

with respect to ¢ if Ou/0t is piecewise smooth.
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