Exercise 3.4.7

Prove that the Fourier series of a continuous function u(x,t) can be differentiated term by term with respect to the parameter t if $\partial u/\partial t$ is piecewise smooth.

Solution

Since u(x,t) is continuous (on $-L \le x \le L$), it has a Fourier series expansion.

$$u(x,t) = A_0(t) + \sum_{n=1}^{\infty} \left[A_n(t) \cos \frac{n\pi x}{L} + B_n(t) \sin \frac{n\pi x}{L} \right]$$

The coefficients are known to be

$$A_0(t) = \frac{1}{2L} \int_{-L}^{L} u(x,t) dx$$

$$A_n(t) = \frac{1}{L} \int_{-L}^{L} u(x,t) \cos \frac{n\pi x}{L}$$

$$B_n(t) = \frac{1}{L} \int_{-L}^{L} u(x,t) \sin \frac{n\pi x}{L}.$$

Because $\partial u/\partial t$ is piecewise smooth, it has a Fourier series expansion of its own.

$$\frac{\partial u}{\partial t} = C_0(t) + \sum_{n=1}^{\infty} \left[C_n(t) \cos \frac{n\pi x}{L} + D_n(t) \sin \frac{n\pi x}{L} \right]$$
 (1)

The aim is to show that

$$C_0(t) = A'_0(t)$$
 and $C_n(t) = A'_n(t)$ and $D_n(t) = B'_n(t)$.

Integrate both sides of equation (1) with respect to x from -L to L.

$$\int_{-L}^{L} \frac{\partial u}{\partial t} dx = \int_{-L}^{L} \left\{ C_0(t) + \sum_{n=1}^{\infty} \left[C_n(t) \cos \frac{n\pi x}{L} + D_n(t) \sin \frac{n\pi x}{L} \right] \right\} dx$$

$$= C_0(t) \int_{-L}^{L} dx + \sum_{n=1}^{\infty} \left[C_n(t) \underbrace{\int_{-L}^{L} \cos \frac{n\pi x}{L} dx}_{=0} + D_n(t) \underbrace{\int_{-L}^{L} \sin \frac{n\pi x}{L} dx}_{=0} \right]$$

$$= C_0(t)(2L)$$

Solve for $C_0(t)$.

$$C_0(t) = \frac{1}{2L} \int_{-L}^{L} \frac{\partial u}{\partial t} dx$$
$$= \frac{d}{dt} \left[\frac{1}{2L} \int_{-L}^{L} u(x, t) dx \right]$$
$$= A'_0(t)$$

Multiply both sides of equation (1) by $\cos \frac{p\pi x}{L}$, where p is an integer,

$$\frac{\partial u}{\partial t}\cos\frac{p\pi x}{L} = C_0(t)\cos\frac{p\pi x}{L} + \sum_{n=1}^{\infty} \left[C_n(t)\cos\frac{n\pi x}{L}\cos\frac{p\pi x}{L} + D_n(t)\sin\frac{n\pi x}{L}\cos\frac{p\pi x}{L} \right]$$

and then integrate both sides with respect to x from -L to L.

$$\int_{-L}^{L} \frac{\partial u}{\partial t} \cos \frac{p\pi x}{L} dx = \int_{-L}^{L} \left\{ C_0(t) \cos \frac{p\pi x}{L} + \sum_{n=1}^{\infty} \left[C_n(t) \cos \frac{n\pi x}{L} \cos \frac{p\pi x}{L} + D_n(t) \sin \frac{n\pi x}{L} \cos \frac{p\pi x}{L} \right] \right\} dx$$

$$= C_0(t) \underbrace{\int_{-L}^{L} \cos \frac{p\pi x}{L} dx}_{=0} + \sum_{n=1}^{\infty} \left[C_n(t) \int_{-L}^{L} \cos \frac{n\pi x}{L} \cos \frac{p\pi x}{L} dx + D_n(t) \underbrace{\int_{-L}^{L} \sin \frac{n\pi x}{L} \cos \frac{p\pi x}{L} dx}_{=0} \right]$$

Because the sine and cosine functions are orthogonal, the third integral is zero for any n and p. Also, the second integral is zero if $n \neq p$. Only if n = p does it yield a nonzero result.

$$\int_{-L}^{L} \frac{\partial u}{\partial t} \cos \frac{n\pi x}{L} dx = C_n(t) \int_{-L}^{L} \cos^2 \frac{n\pi x}{L} dx$$
$$= C_n(t)(L)$$

Solve for $C_n(t)$.

$$C_n(t) = \frac{1}{L} \int_{-L}^{L} \frac{\partial u}{\partial t} \cos \frac{n\pi x}{L} dx$$
$$= \frac{d}{dt} \left[\frac{1}{L} \int_{-L}^{L} u(x, t) \cos \frac{n\pi x}{L} dx \right]$$
$$= A'_n(t)$$

Multiply both sides of equation (1) by $\sin \frac{p\pi x}{L}$, where p is an integer,

$$\frac{\partial u}{\partial t}\sin\frac{p\pi x}{L} = C_0(t)\sin\frac{p\pi x}{L} + \sum_{n=1}^{\infty} \left[C_n(t)\cos\frac{n\pi x}{L}\sin\frac{p\pi x}{L} + D_n(t)\sin\frac{n\pi x}{L}\sin\frac{p\pi x}{L} \right]$$

and then integrate both sides with respect to x from -L to L.

$$\int_{-L}^{L} \frac{\partial u}{\partial t} \sin \frac{p\pi x}{L} dx = \int_{-L}^{L} \left\{ C_0(t) \sin \frac{p\pi x}{L} + \sum_{n=1}^{\infty} \left[C_n(t) \cos \frac{n\pi x}{L} \sin \frac{p\pi x}{L} + D_n(t) \sin \frac{n\pi x}{L} \sin \frac{p\pi x}{L} \right] \right\} dx$$

$$= C_0(t) \underbrace{\int_{-L}^{L} \sin \frac{p\pi x}{L} dx}_{=0} + \sum_{n=1}^{\infty} \left[C_n(t) \underbrace{\int_{-L}^{L} \cos \frac{n\pi x}{L} \sin \frac{p\pi x}{L} dx}_{=0} + D_n(t) \int_{-L}^{L} \sin \frac{n\pi x}{L} \sin \frac{p\pi x}{L} dx \right]$$

Because the sine and cosine functions are orthogonal, the second integral is zero for any n and p. Also, the third integral is zero if $n \neq p$. Only if n = p does it yield a nonzero result.

$$\int_{-L}^{L} \frac{\partial u}{\partial t} \sin \frac{n\pi x}{L} dx = D_n(t) \int_{-L}^{L} \sin^2 \frac{n\pi x}{L} dx$$
$$= D_n(t)(L)$$

Solve for $D_n(t)$.

$$D_n(t) = \frac{1}{L} \int_{-L}^{L} \frac{\partial u}{\partial t} \sin \frac{n\pi x}{L} dx$$
$$= \frac{d}{dt} \left[\frac{1}{L} \int_{-L}^{L} u(x, t) \sin \frac{n\pi x}{L} dx \right]$$
$$= B'_n(t)$$

Therefore, the Fourier series of a continuous function u(x,t) can be differentiated term by term with respect to t if $\partial u/\partial t$ is piecewise smooth.